Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.373
1.
Anal Chem ; 96(17): 6812-6818, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38634576

Among the primary threats to human health worldwide, nonsmall cell lung cancer (NSCLC) remains a significant factor and is a leading cause of cancer-related deaths. Due to subtle early symptoms, NSCLC patients are diagnosed at advanced stages, resulting in low survival rates. Herein, novel Au-Se bond nanoprobes (NPs) designed for the specific detection of Calpain-2 (CAPN2) and Human Neutrophil Elastase (HNE), pivotal biomarkers in NSCLC, were developed. The NPs demonstrated exceptional specificity and sensitivity toward CAPN2 and HNE, enabling dual-color fluorescence imaging to distinguish between NSCLC cells and normal lung cells effectively. The NPs' performance was consistent across a wide pH range (6.2 to 8.0), and it exhibited remarkable resistance to biological thiol interference, indicating its robustness in complex physiological environments. These findings suggest the nanoprobe is a promising tool for early NSCLC diagnosis, offering a novel approach for enhancing the accuracy of cancer detection.


Carcinoma, Non-Small-Cell Lung , Fluorescent Dyes , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Fluorescent Dyes/chemistry , Optical Imaging , Gold/chemistry , Calpain/metabolism , Calpain/analysis , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Cell Line, Tumor
2.
Eur J Pharmacol ; 972: 176558, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38614382

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.


Cell Cycle Proteins , Cell Death , Polo-Like Kinase 1 , Proteasome Endopeptidase Complex , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Humans , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Animals , Proteasome Endopeptidase Complex/metabolism , Cell Death/drug effects , Mice , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Mice, Nude , Pteridines/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Calpain/antagonists & inhibitors , Calpain/metabolism , Enzyme Activation/drug effects , Xenograft Model Antitumor Assays , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology
3.
Cancer Lett ; 590: 216845, 2024 May 28.
Article En | MEDLINE | ID: mdl-38589004

Pancreatic adenocarcinoma (PDAC) is highly resistant to conventional chemotherapeutic interventions, resulting in exceptionally low survival rates. The limited efficacy can in part be attributed to dose limitations and treatment cessation urged by toxicity of currently used chemotherapy. The advent of targeted delivery strategies has kindled hope for circumventing off-target toxicity. We have previously reported a PDAC-specific mesoporous silica nanoparticle (MSN) containing a protease linker responsive to ADAM9, a PDAC-enriched extracellularly deposited protease. Upon loading with paclitaxel these ADAM9-MSNs reduced side effects both in vitro and in vivo, however, disappointing antitumor efficacy was observed in vivo. Here, we propose that an efficient uptake of MSNs by tumor cells might underlie the lack of antitumor efficacy of MSNs functionalized with linker responsive to extracellular proteases. Harnessing this premise to improve antitumor efficacy, we performed an in silico analysis to identify PDAC-enriched intracellular proteases. We report the identification of BACE2, CAPN2 and DPP3 as PDAC enriched intracellular proteases, and report the synthesis of BACE2-, CAPN2- and DPP3-responsive MSNs. Extensive preclinical assessments revealed that paclitaxel-loaded CAPN2- and DPP3-MSNs exhibit high PDAC specificity in vitro as opposed to free paclitaxel. The administration of paclitaxel-loaded CAPN2- and DPP3-MSNs in vivo confirmed the reduction of leukopenia and induced no organ damage. Promisingly, in two mouse models CAPN2-MSNs reduced tumor growth at least as efficiently as free paclitaxel. Taken together, our results pose CAPN2-MSNs as a promising nanocarrier for the targeted delivery of chemotherapeutics in PDAC.


Calpain , Drug Carriers , Nanoparticles , Paclitaxel , Pancreatic Neoplasms , Silicon Dioxide , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Silicon Dioxide/chemistry , Humans , Animals , Paclitaxel/pharmacology , Paclitaxel/administration & dosage , Nanoparticles/chemistry , Cell Line, Tumor , Calpain/metabolism , Drug Carriers/chemistry , Xenograft Model Antitumor Assays , Mice , Porosity , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Mice, Nude , Female
4.
Biomed Pharmacother ; 174: 116539, 2024 May.
Article En | MEDLINE | ID: mdl-38615610

This study aimed to investigate the effects of the calpain inhibitor N-Acetyl-Leu-Leu-norleucinal (ALLN) on neuroapoptotic cell damage caused by Copper Oxide Nanoparticles (CuO-NP) and exacerbation of damage through brain ischemia/reperfusion (I/R) in a rat model. Male Wistar Albino rats (n=80) were divided into eight groups: Control, I/R, CuO-NP, CuO-NP+I/R, I/R+ALLN, CuO-NP+ALLN, CuO-NP+I/R+ALLN, and DMSO. Biochemical markers (MBP, S100B, NEFL, NSE, BCL-2, Cyt-C, Calpain, TNF-α, Caspase-3, MDA, and CAT) were measured in serum and brain tissue samples. Histological examinations (H&E staining), DNA fragmentation analysis (TUNEL) were performed, along with Caspase-3 assessment. The ALLN-treated groups exhibited significant improvements in biochemical markers and a remarkable reduction in apoptosis compared to the damaged groups (CuO-NP and I/R). H&E and Caspase-3 staining revealed damage-related morphological changes and reduced apoptosis in the ALLN-treated group. However, no differences were observed among the groups with TUNEL staining. The findings suggest that ALLN, as a calpain inhibitor, has potential implications for anti-apoptotic treatment, specifically in mitigating neuroapoptotic cell damage caused by CuO-NP and I/R.


Calpain , Copper , Disease Models, Animal , Glycoproteins , Leupeptins , Rats, Wistar , Reperfusion Injury , Animals , Male , Reperfusion Injury/pathology , Reperfusion Injury/drug therapy , Copper/toxicity , Calpain/metabolism , Calpain/antagonists & inhibitors , Rats , Apoptosis/drug effects , Nanoparticles , Oligopeptides/pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Brain Ischemia/chemically induced , Brain/drug effects , Brain/pathology , Brain/metabolism , Neuroprotective Agents/pharmacology , Caspase 3/metabolism
5.
Sci Rep ; 14(1): 6761, 2024 03 21.
Article En | MEDLINE | ID: mdl-38514708

Voltage-gated sodium channels (NaV) are pivotal proteins responsible for initiating and transmitting action potentials. Emerging evidence suggests that proteolytic cleavage of sodium channels by calpains is pivotal in diverse physiological scenarios, including ischemia, brain injury, and neuropathic pain associated with diabetes. Despite this significance, the precise mechanism by which calpains recognize sodium channels, especially given the multiple calpain isoforms expressed in neurons, remains elusive. In this work, we show the interaction of Calpain-10 with NaV's C-terminus through a yeast 2-hybrid assay screening of a mouse brain cDNA library and in vitro by GST-pulldown. Later, we also obtained a structural and dynamic hypothesis of this interaction by modeling, docking, and molecular dynamics simulation. These results indicate that Calpain-10 interacts differentially with the C-terminus of NaV1.2 and NaV1.6. Calpain-10 interacts with NaV1.2 through domains III and T in a stable manner. In contrast, its interaction with NaV1.6 involves domains II and III, which could promote proteolysis through the Cys-catalytic site and C2 motifs.


Calpain , Voltage-Gated Sodium Channels , Animals , Mice , Action Potentials , Calpain/metabolism , Neurons/metabolism , Protein Isoforms/metabolism , Voltage-Gated Sodium Channels/metabolism
6.
PLoS One ; 19(3): e0298184, 2024.
Article En | MEDLINE | ID: mdl-38547301

ß-catenin is an important regulator of malignant progression. 17ß-Estradiol (E2), an important sex hormone in women, promotes the growth and metastasis of triple-negative breast cancer (TNBC). However, whether ß-catenin is involved in E2-induced metastasis of TNBC remains unknown. In this study, we show that E2 induces the proliferation, migration, invasion, and metastasis of TNBC cells. E2 induces ß-catenin protein expression and nuclear translocation, thereby regulating the expression of target genes such as Cyclin D1 and MMP-9. The inhibition of ß-catenin reversed the E2-induced cell malignant behaviors. Additionally, E2 activated Calpain by increasing intracellular Ca2+ levels and reducing calpastatin levels. When Calpain was inhibited, E2 did not induce the proliferation, migration, invasion, or metastasis of TNBC cells. In addition, E2 promoted translocation of YAP into the nucleus by inhibiting its phosphorylation. Calpain inhibition reversed the E2-induced YAP dephosphorylation. Inhibition of YAP transcriptional activity reversed the effects of E2 on the proliferation, migration, invasion, and ß-catenin of TNBC cells. In conclusion, we demonstrated that E2 induced metastasis-related behaviors in TNBC cells and this effect was mediated through the Calpain/YAP/ß-catenin signaling pathway.


Triple Negative Breast Neoplasms , beta Catenin , Female , Humans , beta Catenin/metabolism , Triple Negative Breast Neoplasms/pathology , Calpain/metabolism , Cell Line, Tumor , Signal Transduction , Estradiol/pharmacology , Cell Proliferation
7.
Exp Gerontol ; 189: 112400, 2024 May.
Article En | MEDLINE | ID: mdl-38484904

Alzheimer's disease (AD) stands as a neurodegenerative disorder causing cognitive decline, posing a significant health concern for the elderly population in China. This study explored the effects of outer membrane vesicles (OMVs) from the gut microbiota of AD patients on learning and memory abilities and Tau protein phosphorylation in mice. In contrast to the OMVs from healthy controls and the PBS treatment group, mice treated with AD-OMVs exhibited notable declines in learning and memory capabilities, as evidenced by results from the Morris water maze, Y-maze, and novel object recognition tests. Immunohistochemistry and Western blot assessments unveiled elevated levels of hyperphosphorylated Tau in the cortex and hippocampus of mice treated with AD-OMVs. However, there were no alterations observed in the total Tau levels. In addition, AD-OMVs treated mice showed increased neuroinflammation indicated by elevated astrocytes and microglia. Molecular mechanism studies demonstrated that AD-OMVs could activate GSK3ß, CDK5-Calpain and NF-κB pathways in mice hippocampus. These studies suggest AD patient gut microbiota derived OMVs can promote host Tau phosphorylation and improved neuroinflammation.


Alzheimer Disease , Lactobacillus pentosus , Aged , Mice , Humans , Animals , tau Proteins/metabolism , Phosphorylation , Calpain/metabolism , Lactobacillus pentosus/metabolism , Neuroinflammatory Diseases , Alzheimer Disease/metabolism , Hippocampus/metabolism , Disease Models, Animal
8.
J Cell Sci ; 137(4)2024 Feb 15.
Article En | MEDLINE | ID: mdl-38305737

Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.


Neural Stem Cells , Transcription Factors , Animals , Mice , Calpain/genetics , Calpain/metabolism , Cell Differentiation , Cell Proliferation , Endopeptidases/metabolism , Lateral Ventricles/metabolism , Neural Stem Cells/metabolism , Neurogenesis/genetics , Neurons/metabolism , Peptide Hydrolases/metabolism , Transcription Factors/metabolism
9.
Cell Commun Signal ; 22(1): 92, 2024 02 01.
Article En | MEDLINE | ID: mdl-38303059

Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.


Egtazic Acid/analogs & derivatives , Retinal Degeneration , Sirtuins , Mice , Animals , Retinal Degeneration/metabolism , Calpain/metabolism , Sodium-Calcium Exchanger , Photoreceptor Cells/metabolism , Photoreceptor Cells/pathology , Cell Death , Sirtuins/metabolism
10.
Neurochem Int ; 175: 105697, 2024 May.
Article En | MEDLINE | ID: mdl-38364938

Multiple sclerosis (MS) is an autoimmune disease characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. Unfortunately, there is no cure for it. Current therapies that target immunomodulation and/or immunosuppression show only modest beneficial effects, have many side effects, and do not block neurodegeneration or progression of the disease. Since neurodegeneration and in particular axonal degeneration is implicated in disability in progressive MS, development of novel therapeutic strategies to attenuate the neurodegenerative processes is imperative. This study aims to develop new safe and efficacious treatments that address both the inflammatory and neurodegenerative aspects of MS using its animal model, experimental allergic encephalomyelitis (EAE). In EAE, the cysteine protease calpain is upregulated in CNS tissue, and its activity correlates with neurodegeneration. Our immunologic studies on MS have indicated that increased calpain activity promotes pro-inflammatory T helper (Th)1 cells and the severity of the disease in EAE, suggesting that calpain inhibition could be a novel target to combat neurodegeneration in MS/EAE. While calpain inhibition by SNJ1945 reduced disease severity, treatment of EAE animals with a novel protease-resistant altered small peptide ligand (3aza-APL) that mimic myelin basic protein (MBP), also decreased the incidence of EAE, disease severity, infiltration of inflammatory cells, and protected myelin. A reduction in inflammatory T-cells with an increase in Tregs and myeloid suppressor cells is also found in EAE mice treated with SNJ1945 and 3aza-APL. Thus, a novel combination strategy was tested in chronic EAE mouse model in B10 mice which showed multiple pathological mechanisms could be addressed by simultaneous treatment with calpain inhibitor SNJ1945 and protease-resistant 3aza-APL to achieve a stronger therapeutic effect.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Calpain/metabolism , Calpain/therapeutic use , Inflammation/drug therapy , Central Nervous System/metabolism , Mice, Inbred C57BL , Disease Models, Animal
11.
mBio ; 15(3): e0228723, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38349185

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (Mpro), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a chimeric vesicular stomatitis virus (VSV) encoding the SARS-CoV-2 spike protein but not Mpro. In contrast, calpain inhibitors did not exhibit antiviral activities toward the wild-type VSV with its native glycoprotein. Genetic knockout of calpain-2 by CRISPR/Cas9 conferred resistance of the host cells to the chimeric VSV-SARS-CoV-2 virus and a clinical isolate of wild-type SARS-CoV-2. Mechanistically, calpain-2 facilitates SARS-CoV-2 spike protein-mediated cell attachment by positively regulating the cell surface levels of ACE2. These results highlight an Mpro-independent pathway targeted by calpain inhibitors for efficient viral inhibition. We also identify calpain-2 as a novel host factor and a potential therapeutic target responsible for SARS-CoV-2 infection at the entry step. IMPORTANCE: Many efforts in small-molecule screens have been made to counter SARS-CoV-2 infection by targeting the viral main protease, the major element that processes viral proteins after translation. Here, we discovered that calpain inhibitors further block SARS-CoV-2 infection in a main protease-independent manner. We identified the host cysteine protease calpain-2 as an important positive regulator of the cell surface levels of SARS-CoV-2 cellular receptor ACE2 and, thus, a facilitator of viral infection. By either pharmacological inhibition or genetic knockout of calpain-2, the SARS-CoV-2 binding to host cells is blocked and viral infection is decreased. Our findings highlight a novel mechanism of ACE2 regulation, which presents a potential new therapeutic target. Since calpain inhibitors also potently interfere with the viral main protease, our data also provide a mechanistic understanding of the potential use of calpain inhibitors as dual inhibitors (entry and replication) in the clinical setting of COVID-19 diseases. Our findings bring mechanistic insights into the cellular process of SARS-CoV-2 entry and offer a novel explanation to the mechanism of activities of calpain inhibitors.


COVID-19 , SARS-CoV-2 , Humans , Calpain/metabolism , Calpain/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacology , Virus Internalization
12.
Food Chem ; 441: 138287, 2024 May 30.
Article En | MEDLINE | ID: mdl-38218141

While calpain's role in myofibrillar protein degradation is well-established, its impact on post-mortem apoptosis remains fully elucidated. This study aimed to examine how calpain influences the mitochondrial apoptotic pathway in post-mortem muscle cells and assess its potential impact on chicken tenderness. The findings indicate that the calpain inhibitor treatment could decelerate the rate of lysosome destruction in post-mortem chicken, which is a crucial factor in delaying the mitochondrial apoptotic pathway. Subsequently, this inhibition enhanced the mitochondrial membrane's stability and suppressed the apoptosis-inducing factor Cyt c release into the sarcoplasm. The Western blot results in a greater myofibrillar protein degradation degree in the caspase inhibitor samples compared to the calpain inhibitor samples. Interestingly, the two groups had no significant difference in shear force. Based on these reasons, a novel perspective was introduced in this paper: Calpain could affect the change in meat tenderness by regulating mitochondrial apoptosis in the post-mortem period.


Calpain , Meat , Animals , Calpain/metabolism , Proteolysis , Meat/analysis , Apoptosis , Chickens/metabolism , Postmortem Changes
13.
Phytomedicine ; 125: 155250, 2024 Mar.
Article En | MEDLINE | ID: mdl-38295664

BACKGROUND: Astragaloside IV (AsIV), a key functioning element of Astragalus membranaceus, has been recognized for its potential cardiovascular protective properties. However, there is a need to elucidate the impacts of AsIV on myocardial hypertrophy under hypoxia conditions and its root mechanisms. PURPOSE: This study scrutinized the influence of AsIV on cardiac injury under hypoxia, with particular emphasis on the role of calpain-1 (CAPN1) in mediating mTOR pathways. METHODS: Hypoxia-triggered cardiac hypertrophy was examined in vivo with CAPN1 knockout and wild-type C57BL/6 mice and in vitro with H9C2 cells. The impacts of AsIV, 3-methyladenine, and CAPN1 inhibition on hypertrophy, autophagy, apoptosis, [Ca2+]i, and CAPN1 and mTOR levels in cardiac tissues and H9C2 cells were investigated. RESULTS: Both AsIV treatment and CAPN1 knockout mitigated hypoxia-induced cardiac hypertrophy, autophagy, and apoptosis in mice and H9C2 cells. Moreover, AsIV, 3-methyladenine, and CAPN1 inhibition augmented p-mTOR level but reduced [Ca2+]i and CAPN1 level. Additionally, lentivirus-mediated CAPN1 overexpression in H9C2 cells exacerbated myocardial hypertrophy, apoptosis, and p-mTOR inhibition under hypoxia. Specifically, AsIV treatment reversed the impacts of increased CAPN1 expression on cardiac injury and the inhibition of p-mTOR. CONCLUSION: These findings suggest that AsIV may alleviate cardiac hypertrophy under hypoxia by attenuating apoptosis and autophagy through CAPN1-mediated mTOR activation.


Saponins , Triterpenes , Mice , Animals , Calpain/adverse effects , Calpain/metabolism , Mice, Inbred C57BL , Cardiomegaly/chemically induced , Saponins/metabolism , Triterpenes/pharmacology , Triterpenes/metabolism , TOR Serine-Threonine Kinases/metabolism , Hypoxia/drug therapy , Apoptosis , Myocytes, Cardiac
14.
J Biol Chem ; 300(2): 105630, 2024 Feb.
Article En | MEDLINE | ID: mdl-38199568

Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.


Armadillo Domain Proteins , Cytoskeletal Proteins , Neurons , Animals , Mice , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Axons/metabolism , Calpain/metabolism , Cytoskeletal Proteins/metabolism , Dendrites/metabolism , Neurons/metabolism , Signal Transduction
16.
Mol Cell Biochem ; 479(4): 793-809, 2024 Apr.
Article En | MEDLINE | ID: mdl-37184757

The N-terminal region of troponin T (TnT) does not bind any protein of the contractile machinery and the role of its hypervariability remains uncertain. In this review we report the evidence of the interaction between TnT and AMP deaminase (AMPD), a regulated zinc enzyme localized on the myofibril. In periods of intense muscular activity, a decrease in the ATP/ADP ratio, together with a decrease in the tissue pH, is the stimulus for the activation of the enzyme that deaminating AMP to IMP and NH3 displaces the myokinase reaction towards the formation of ATP. In skeletal muscle subjected to strong tetanic contractions, a calpain-like proteolytic activity produces the removal in vivo of a 97-residue N-terminal fragment from the enzyme that becomes desensitized towards the inhibition by ATP, leading to an unrestrained production of NH3. When a 95-residue N-terminal fragment is removed from AMPD by trypsin, simulating in vitro the calpain action, rabbit fast TnT or its phosphorylated 50-residue N-terminal peptide binds AMPD restoring the inhibition by ATP. Taking in consideration that the N-terminus of TnT expressed in human as well as rabbit white muscle contains a zinc-binding motif, we suggest that TnT might mimic the regulatory action of the inhibitory N-terminal domain of AMPD due to the presence of a zinc ion connecting the N-terminal and C-terminal regions of the enzyme, indicating that the two proteins might physiologically associate to modulate muscle contraction and ammonia production in fast-twitching muscle under strenuous conditions.


AMP Deaminase , Troponin T , Animals , Humans , Rabbits , Adenosine Triphosphate , Ammonia , AMP Deaminase/chemistry , AMP Deaminase/metabolism , Calpain/metabolism , Muscle Contraction , Muscle, Skeletal/metabolism , Peptides , Proteins , Troponin T/chemistry , Zinc/metabolism
17.
CNS Neurosci Ther ; 30(2): e14365, 2024 02.
Article En | MEDLINE | ID: mdl-37485782

AIMS: To verify the hypothesis that an enriched environment (EE) alleviates sleep deprivation-induced fear memory impairment by modulating the basal forebrain (BF) PIEZO1/calpain/autophagy pathway. METHODS: Eight-week-old male mice were housed in a closed, isolated environment (CE) or an EE, before 6-h total sleep deprivation. Changes in fear memory after sleep deprivation were observed using an inhibitory avoidance test. Alterations in BF PIEZO1/calpain/autophagy signaling were detected. The PIEZO1 agonist Yoda1 or inhibitor GsMTx4, the calpain inhibitor PD151746, and the autophagy inducer rapamycin or inhibitor 3-MA were injected into the bilateral BF to investigate the pathways involved in the memory-maintaining role of EE in sleep-deprived mice. RESULTS: Mice housed in EE performed better than CE mice in short- and long-term fear memory tests after sleep deprivation. Sleep deprivation resulted in increased PIEZO1 expression, full-length tropomyosin receptor kinase B (TrkB-FL) degradation, and autophagy, as reflected by increased LC3 II/I ratio, enhanced p62 degradation, increased TFEB expression and nuclear translocation, and decreased TFEB phosphorylation. These molecular changes were partially reversed by EE treatment. Microinjection of Yoda1 or rapamycin into the bilateral basal forebrain induced excessive autophagy and eliminated the cognition-protective effects of EE. Bilateral basal forebrain microinjection of GsMTx4, PD151746, or 3-MA mimicked the cognitive protective and autophagy inhibitory effects of EE in sleep-deprived mice. CONCLUSIONS: EE combats sleep deprivation-induced fear memory impairments by inhibiting the BF PIEZO1/calpain/autophagy pathway.


Acrylates , Basal Forebrain , Calpain , Animals , Male , Mice , Autophagy , Basal Forebrain/metabolism , Calpain/metabolism , Fear , Memory Disorders/etiology , Memory Disorders/therapy , Signal Transduction , Sirolimus/pharmacology , Sirolimus/therapeutic use , Sleep Deprivation/complications
18.
Mol Neurobiol ; 61(1): 533-540, 2024 Jan.
Article En | MEDLINE | ID: mdl-37642934

Hypoxic-ischemic encephalopathy (HIE) is a complex pathophysiological process with multiple links and factors. It involves the interaction of inflammation, oxidative stress, and glucose metabolism, and results in acute and even long-term brain damage and impairment of brain function. Calpain is a family of Ca2+-dependent cysteine proteases that regulate cellular function. Calpain activation is involved in cerebral ischemic injury, and this involvement is achieved by the interaction among Ca2+, substrates, organelles, and multiple proteases in the neuronal necrosis and apoptosis pathways after cerebral ischemia. Many calpain inhibitors have been developed and tested in the biochemical and biomedical fields. This study reviewed the potential role of calpain in the treatment of HIE and related mechanism, providing new insights for future research on HIE.


Hypoxia-Ischemia, Brain , Humans , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Calpain/metabolism , Necrosis/drug therapy , Cerebral Infarction/drug therapy
19.
Hear Res ; 441: 108919, 2024 Jan.
Article En | MEDLINE | ID: mdl-38043402

Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment involving disruptions to inner hair cells (IHCs), ribbon synapses, spiral ganglion neurons (SGNs), and/or the auditory nerve itself. The outcomes of cochlear implants (CI) for ANSD are variable and dependent on the location of lesion sites. Discovering a potential therapeutic agent for ANSD remains an urgent requirement. Here, 293T stable transfection cell lines and patient induced pluripotent stem cells (iPSCs)-derived auditory neurons carrying the apoptosis inducing factor (AIF) p.R422Q variant were used to pursue a therapeutic regent for ANSD. Nicotinamide adenine dinucleotide (NADH) is a main electron donor in the electron transport chain (ETC). In 293T stable transfection cells with the p.R422Q variant, NADH treatment improved AIF dimerization, rescued mitochondrial dysfunctions, and decreased cell apoptosis. The effects of NADH were further confirmed in patient iPSCs-derived neurons. The relative level of AIF dimers was increased to 150.7 % (P = 0.026) from 59.2 % in patient-neurons upon NADH treatment. Such increased AIF dimerization promoted the mitochondrial import of coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4), which further restored mitochondrial functions. Similarly, the content of mitochondrial calcium (mCa2+) was downregulated from 136.7 % to 102.3 % (P = 0.0024) in patient-neurons upon NADH treatment. Such decreased mCa2+ levels inhibited calpain activity, ultimately reducing the percentage of apoptotic cells from 30.5 % to 21.1 % (P = 0.021). We also compared the therapeutic effects of gene correction and NADH treatment on hereditary ANSD. NADH treatment had comparable restorative effects on functions of ANSD patient-specific cells to that of gene correction. Our findings offer evidence of the molecular mechanisms of ANSD and introduce NADH as a potential therapeutic agent for ANSD therapy.


Apoptosis Inducing Factor , Apoptosis , Hearing Loss, Central , NAD , Sensory Receptor Cells , Hearing Loss, Central/genetics , Hearing Loss, Central/metabolism , Hearing Loss, Central/physiopathology , Apoptosis/drug effects , NAD/pharmacology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Dimerization , Mitochondria/drug effects , HEK293 Cells , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Calcium/metabolism , Reactive Oxygen Species/metabolism , Calpain/metabolism , Enzyme Activation/drug effects , Genotype , Humans , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism
20.
J Neurosci Methods ; 402: 110012, 2024 02.
Article En | MEDLINE | ID: mdl-37984591

BACKGROUND: Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase. In healthy tissue, CN exists mainly as a full-length (∼60 kDa) highly-regulated protein phosphatase involved in essential cellular functions. However, in diseased or injured tissue, CN is proteolytically converted to a constitutively active fragment that has been causatively-linked to numerous pathophysiologic processes. These calpain-cleaved CN fragments (∆CN) appear at high levels in human brain at early stages of cognitive decline associated with Alzheimer's disease (AD). NEW METHOD: We developed a monoclonal antibody to ∆CN, using an immunizing peptide corresponding to the C-terminal end of the ∆CN fragment. RESULTS: We obtained a mouse monoclonal antibody, designated 26A6, that selectively detects ∆CN in Western analysis of calpain-cleaved recombinant human CN. Using this antibody, we screened both pathological and normal human brain sections provided by the University of Kentucky's Alzheimer's Disease Research Center. 26A6 showed low reactivity towards normal brain tissue, but detected astrocytes both surrounding AD amyloid plaques and throughout AD brain tissue. In brain tissue with infarcts, there was considerable concentration of 26A6-positive astrocytes within/around infarcts, suggesting a link with anoxic/ischemia pathways. COMPARISON WITH EXISTING METHOD: The results obtained with the new monoclonal are similar to those obtained with a polyclonal we had previously developed. However, the monoclonal is an abundant tool available to the dementia research community. CONCLUSIONS: The new monoclonal 26A6 antibody is highly selective for the ∆CN proteolytic fragment and labels a subset of astrocytes, and could be a useful tool for marking insidious brain pathology and identifying novel astrocyte phenotypes.


Alzheimer Disease , Calpain , Mice , Animals , Humans , Calpain/metabolism , Calcineurin/genetics , Calcineurin/metabolism , Alzheimer Disease/metabolism , Astrocytes/metabolism , Antibodies, Monoclonal/metabolism , Infarction/metabolism , Infarction/pathology
...